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In this paper we study the rate of convergence of two Bernstein�Be� zier type
operators B (:)

n and L (:)
n for bounded variation functions. By means of construction

of suitable functions and the method of Bojanic and Vuillemier (J. Approx. Theory
31 (1981), 67�79), using some results of probability theory, we obtain asymptotically
optimal estimations of B (:)

n and L (:)
n for bounded variation functions at points of

continuity and points of discontinuity. � 1998 Academic Press

1. INTRODUCTION

The object of this paper is to deal with approximation of bounded varia-
tion functions with two Bernstein�Be� zier type operators. Let Pnk(x)=
( n

k) xk(1&x)n&k (0�k�n) be the Bernstein basis functions. Let Jnk(x)=
�n

j=k Pnj (x) be the Be� zier basis functions, which were introduced by
P. Be� zier [2]. For :�1, and a function f defined on [0, 1], the Bernstein�
Be� zier operator B(:)

n is defined by

B(:)
n ( f, x)= :

n

k=0

f (k�n) Q (:)
nk (x), (1)
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and, for a function f # L1[0, 1], the Bernstein�Kantorovich�Be� zier operator
L(:)

n is defined by

L (:)
n ( f, x)=(n+1) :

n

k=0

Q (:)
nk (x) |

Ik

f (t) dt (2)

where Ik=[k�n+1, k+1�n+1] (0�k�n), and Q (:)
nk (x)=J :

n, k(x)&
J:

n, k+1(x), (Jn, n+1(x)#0). It is easily seen that B(:)n and L (:)
n are positive

linear operators, B (:)
n (1, x)=1, L (:)

n (1, x)=1, and when :=1, the become
the well-known Bernstein operator

Bn( f, x)= :
n

k=0

f (k�n) Pnk(x), (3)

and Bernstein�Kantorovich operator

Ln( f, x)=(n+1) :
n

k=0

Pnk(x) |
Ik

f (t) dt. (4)

Let us first recall some results on the operators B (:)
n and L (:)

n , which are
relevant to this paper. The Bernstein�Be� zier operator B (:)

n was defined by
Chang [3] in 1983. Chang studied the convergence of B (:)

n and showed that
for f # C[0, 1], limn � +� B (:)

n ( f, x)= f (x) is uniform on [0, 1]. In 1985,
Li and Gong [14] estimated the rate of convergence of B (:)

n ( f, x) for
f # C[0, 1], and gave the following result.

Theorem A. For f # C[0, 1], we have

&B (:)
n ( f, x)& f (x)&C[0, 1]�{(1+:�4) |(n&1�2, f ),

M|(n&:�2, f ),
:�1
0<:<1

where |($, f ) is the modulus of continuity of f (x). M is a constant depending
only on : and f.

In 1986 Liu [11] obtained an inverse theorem for B (:)
n in C[0, 1] as

follows:

Theorem B. Let f # C[0, 1], :�1 and 0<;<1 such that

|B (:)
n ( f, x)& f (x)|�M(max[n&1, - x(1&x)�n1�2]);,

where M is a constant; then f # Lip ;.
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The Bernstein�Kantorovich�Be� zier operator L(:)
n ( f ), which is well

adapted to approximation in the space Lp(0, 1), 1�p<� was studied by
Liu[5], who proved:

Theorem C. Let 1�p<�. Then we have for any f # Lp(0, 1),

&L (:)
n ( f )& f &p�M|( f, n&1�2)p

where |( f, t)p , is the modulus of continuity of f in Lp[0, 1], and M is a
constant depending only on : and p.

In this paper, we shall consider the approximation of the operators B (:)
n

and L(:)
n in the space BV[0, 1] and give asymptotically optimal estimates

on the rate of convergence of B (:)
n and L (:)

n for functions of bounded varia-
tion. We recall some results for Bernstein operator Bn , which are important
for this paper.

Herzog and Hill [13] proved that if f is bounded on [0, 1] and x is a
point of discontinuity of the first kind, then

lim
n � �

Bn( f, x)= 1
2 ( f (x+)+ f (x&)). (5)

Consequently, if f is a function of bounded variation on [0, 1], then (5)
holds for all x # (0, 1).

In 1983 Cheng [4] gave a rate of convergence of Bn for normalized
bounded variation functions as follows:

Let f be of bounded variation on [0, 1]. Then for every x # (0, 1) and
n�(3�x(1&x))8, we have

|Bn( f, x)& 1
2 ( f (x+)+ f (x&))|

�
3

nx(1&x)
:
n

k=1

V x+(1&x)�- k
x&x�- k (gx)

+
18

n1�6(x(1&x))5�2 | f (x+)& f (x&)| (6)

where V b
a(gx) is total variation of gx on [a, b], and

f (t)& f (x+), x<t�1;

gx(t)={0, t=x;

f (t)& f (x&), 0�t<x.

In 1989 Guo and Khan [6] generalized Cheng's work by dealing with
the approximation of Feller operators, which include some classical
operators such as Bernstein, Sza� sz, Baskakov, and Weierstrass operators.
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In this paper, we shall improve and extend Cheng's work from another
aspect by dealing with the approximation of two types of non-Feller
operators, B(:)

n and L (:)
n , for bounded variation functions. (B (:)

n and L (:)
n ,

except B (1)
n , are not Feller operators, that is, B (:)

n (t, x){x, and
L(:)

n (t, x){x; see 38, 40.) Furthermore, at the end of Section 2 we give an
estimation for Bernstein operator Bn , which improves the result of Guo
and Khan [6, (3.2)]. Our main results can be stated as follows:

Theorem 1. Let f be of bounded variation on [0, 1]. Then for every
x # [0, 1] and n�1, we have

}B (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1
2:+ f (x&)&}

�
3:

nx(1&x)+1
:
n

k=1

V x+(1&x)�- k
x&x�- k (gx)

+
2:

- nx(1&x)+1
(| f (x+)& f (x&)|+en(x) | f (x)& f (x&)|) (7)

where

en(x)={0, if x{k�n for all k # N
1, if x=k�n for a k # N

(when x=0, (resp.: x=1), we set (1�2:) f (x+)+(1&(1�2:)) f (x&)=
f (0) (resp.: f (1)).

Theorem 2. Let f be of bounded variation on [0, 1]. Then for every
x # (0, 1) and n>1�3x(1&x), we have

}L (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1
2:+ f (x&)&}

�
5:

nx(1&x)+1
:
n

k=1

V x+(1&x)�- k
x&x�- k

(gx)

+
4:

- nx(1&x)+1
| f (x+)& f (x&)|. (8)

In the particular case :=1, our Theorem 1 improves the result (6) of
Cheng. Moreover, our results provide a more general case, since our
bounded variation functions are not necessary normalized. In the last part,
we shall prove that our estimates are asymptotically optimal for bounded
variation functions at points of continuity and points of discontinuity.
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Remark 1. The estimation term

2:

- nx(1&x)+1
en(x) | f (x)& f (x&)|

on the right of (7) is indispensable even when :=1. The estimate (6) is
incorrect without this term for unnormalized functions of bounded varia-
tion. For example, for the function

f0(t)={1, t= 1
2

0, 0�t< 1
2 or 1

2<t�1,

f0(t) is of bounded variation on [0, 1]. However estimate (6) is not true for
f0(t), n=2m positive even number, and x= 1

2 .

Using the Korovkin Theorem, we deduce from Theorems 1 and 2:

Corollary 1. If f (t) is bounded on [0, 1], and if x # (0, 1) is a
discontinuity point of the first kind of f (t), we have:

lim
n � +�

B (:)
n ( f, x)=

1
2: f (x+)+\1&

1
2:+ f (x&) (9)

and

lim
n � +�

L (:)
n ( f, x)=

1
2: f (x+)+\1&

1
2:+ f (x&). (10)

As :=1, from (9) we obtain the result (5) of Herzog and Hill.
A part of our results has been announced in [7].

2. PROOF OF MAIN RESULTS

We will need the following lemmas for proving our results. Lemma 1 is
the well-known Berry�Esseen bound for the classical central limit theorem
of probability theory. Its proof and further discussion can be found in
Loe� ve [8, p. 300] and Feller [9, p. 515].

Lemma 1. Let [!k]+�
k=1 be a sequence of independent and identically

distributed random variables with finite variance such that E(!1)=a1 # R=
(&�, +�) Var(!1)=b2

1>0. Assume E |!1&E!1 |3<�, then there exists
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a numerical constant C, 1�- 2?�C<0.8, such that for all n=1, 2, ..., and
all t,

}P \ 1

b1 - n
:
n

k=1

(!k&a1)�t+&
1

- 2? |
t

&�
e&u2�2 du }<C

E |!1&E!1 | 3

- n b3
1

.

(11)

Lemma 2. For x # [0, 1], we have

} :
nx<k�n

Pnk(x)&
1
2 }<

0.8(2x2&2x+1)+1�2

- nx(1&x)+1
(12)

and

} :
nx<k�n

Pnk(x)&
1
2 }<

0.8(2x2&2x+1)+1�6

- nx(1&x)+1�3
(13)

Proof. Let !1 be the random variable with two-point distribution
P(!1= j)=x j (1&x)1& j ( j=0, 1, and x # [0, 1] is parameter), hence
a1=E!1=x, b1=- x(1&x), and E |!1&E!1 |3=x(1&x)[x2+(1&x)2].
Let [!k]+�

k=1 be a sequence of independent random variables identically
distributed with !1 , 'n=�n

k=1 !k . Then the probability distribution of the
random variable 'n is

P('n=k)=\n
k+ xk(1&x)n&k=Pnk(x) (0�k�n).

So

:
nx<k�n

Pnk(x)=P(nx<'n�n)=1&P('n�nx)=1&P \ 'n&nx

- nx(1&x)
�0+ .

By Lemma 1, we get

} :
nx<k�n

Pnk(x)&
1
2 }= }P \ 'n&nx

- nx(1&x)
�0+&

1
2 }

<
C

- n

E |!1&E!1 |3

b3
1

<
0.8(2x2&2x+1)

- nx(1&x)

and noticing that |�nx<k�n Pnk(x)& 1
2 |� 1

2 , (12), (13) are obtained.
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From Lemma 2 we can prove that

} :
(n+1) x<k�n

Pnk(x)&
1
2 }�

0.8(2x2&2x+1)+1

- nx(1&x)+1
. (14)

In fact, the interval (nx, nx+x] includes an integer k$ at most. By
[10, Theorem 1], we have

Pnk(x)<
1

- 2e

1

- nx(1&x)
, for 0�k�n.

Hence, by Lemma 2

} :
(n+1) x<k�n

Pnk(x)&
1
2 }� } :

nx<k�n

Pnk(x)&
1
2 }+P(nx<'n�nx+x)

�
0.8(2x2&2x+1)

- nx(1&x)
+Pnk$(x)

�
0.8(2x2&2x+1)

- nx(1&x)
+

1

- 2e

1

- nx(1&x)
.

Now (14) follows with the fact |�(n+1) x<k�n Pnk(x)& 1
2 |� 1

2 .

Lemma 3. For x # [0, 1], there holds

Q (:)
nk (x)<

3
2

:

- nx(1&x)+1
(15)

and

Q(:)
nk (x)<

5
6

:

- nx(1&x)+1�3
. (16)

Proof. It is easy to verify that |a:&b:|�: |a&b| (0�a, b�1, :�1),
and by [10, Theorem 1], we obtain

Q (:)
nk (x)�:Pnk(x)<

1

- 2e

:

- nx(1&x)
.

Since Q (:)
nk (x)�1, (15), (16) are proved.
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Now we define the function sgnt (t) by

2:&1, t>0;

sgnt (t)={0, t=0;

&1, t<0.

Estimates of B (:)
n (sgnt(t&x), x) and L (:)

n (sgnt (t&x), x) are important for
proving our theorems.

Lemma 4. We have

B (:)
n (sgnt (t&x), x)=2: \ :

nx<k�n

Pnk(x)+
:

&1+en(x) Q (:)
nk (x). (17)

Proof. Since

B (:)
n (sgnt (t&x), x)=(2:&1) :

nx<k�n

Q (:)
nk (x)& :

0�k<nx

Q (:)
nk (x)

and

1=B (:)
n (1, x)= :

nx<k�n

Q (:)
nk (x)+ :

0�k<nx

Q (:)
nk (x)+en(x) Q (:)

nk (x),

it follows that

B (:)
n (sgnt(t&x), x)

=(2:&1) :
nx<k�n

Q (:)
nk (x)&_1& :

nx<k�n

Q (:)
nk (x)&en(x) Q (:)

nk (x)&
=2: \ :

nx<k�n

Pnk(x)+
:

&1+en(x) Q (:)
nk (x).

Lemma 5. We have

} f (x+)& f (x&)
2: B (:)

n (sgnt (t&x), x)

+_ f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& B (:)

n ($x , x) }
�

2:

- nx(1&x)+1
(| f (x+)& f (x&)|+en(x) | f (x)& f (x&)|) (18)
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and

} f (x+)& f (x&)
2: B (:)

n (sgnt (t&x), x)

+_ f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& B (:)

n ($x , x)}
�:

0.8(2x2&2x+1)+1�6

- nx(1&x)+1�3
| f (x+)& f (x&)|

+
5
6

:en(x) | f (x)& f (x&)|

- nx(1&x)+1�3
, (19)

where

$x(t)={0, t{x;
1, t=x.

Proof. We have B (:)
n ($x , x)=en(x) Q (:)

nk (x). By (12), (15), and Lemma 4
we get

} f (x+)& f (x&)
2: B (:)

n (sgnt (t&x), x)

+_ f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& B(:)

n ($x , x) }
= } f (x+)& f (x&)

2: _2: \ :
nx<k�n

Pnk(x)+
:

&1&
+[ f (x)& f (x&)] en(x) Q (:)

nk (x) }
�

4

3

:

- nx(1&x)+1
| f (x+)& f (x&)|

+
3

2

:

- nx(1&x)+1
en(x) | f (x)& f (x&)|

�
2:

- nx(1&x)+1
(| f (x+)& f (x&)|+en(x) | f (x)& f (x&)|),

and from (13), (16), and (17), we get (19).
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Lemma 6. The following inequality holds:

} f (x+)& f (x&)
2: L (:)

n (sgnt (t&x), x)}< 4:

- nx(1&x)+1
| f (x+)& f (x&)|.

(20)

Proof. Let x # [k$�n+1, k$+1�n+1); then

L (:)
n (sgnt(t&x), x)=(n+1) :

n

k=0

Q (:)
nk (x) |

Ik

sgnt (t&x) dt

=2: :
n

k=k$

Q (:)
nk (x)&1+2:Q (:)

nk$(x)(k$&nx&x)

� } 2: \ :
(n+1) x<k�n

Pnk(x)+
:

&1 }+2:Q (:)
nk$(x).

Using (14) and Lemma 3 we get (20).

Let

K (1)
n, :(x, t)={ :

k�nt

Q (:)
nk (x), 0<t�1

0, t=0

and

K (2)
n, :(x, t)= :

n

k=0

(n+1) Q (:)
nk (x) /k(t),

where /k is the characteristic function of the interval Ik with respect to
I=[0, 1].

We recall the Lesbesgue�Stieltjes integral representations:

B(:)
n ( f, x)=|

1

0
f (t) dtK (1)

n, :(x, t) (21)

and

L(:)
n ( f, x)=|

1

0
f (t) K (2)

n, :(x, t) dt. (22)

Lemma 7. For every x # (0, 1), and n>1�3x(1&x), we have

L (1)
n ((t&x)2, x)<

2x(1&x)
n

. (23)
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Proof. After simple calculation, we get

L(1)
n (1, x)=1,

L (1)
n (t, x)=x+

1&2x
2(n+1)

,

L(1)
n (t2, x)=x2+

x(2&3x)
n+1

+
1&6x+6x2

3(n+1)2 .

Hence, as n>1�3x(1&x), there holds

L(1)
n ((t&x)2, x)=

x(1&x)
n+1

+
1&6x+6x2

3(n+1)2 <
2x(1&x)

n
.

Lemma 8. Let x # (0, 1); then

(i) For 0� y<x, we have K (1)
n, :(x, y)�:x(1&x)�n(x& y)2.

(ii) For x<z�1, we have 1&K (1)
n, :(x, z)�:x(1&x)�n(x&z)2.

Proof. Let

Kn(x, t)={ :
k�nt

Pnk(x), if 0<t�1;

0, if t=0.

Then

K (1)
n, :(x, y)�:Kn(x, y)=: |

y

0
dtKn(x, t)�: |

y

0 \
x&t
x& y+

2

dt Kn(x, t)

�
:

(x& y)2 |
1

0
(x&t)2 dt Kn(x, t)=:

x(1&x)
n(x& y)2 . (24)

Similarly (ii) is proved.

Using a similar method we prove

Lemma 9. For x # (0, 1), if n>1�3x(1&x), then

(i) For 0� y<x, we have � y
0 K (2)

n, :(x, t) dt�2:x(1&x)�n(x& y)2.

(ii) For x<z�1, we have �1
z K (2)

n, :(x, t) dt�2:x(1&x)�n(x&z)2.

Now we need estimates of B (:)
n (gx , x) and L (:)

n (gx , x).
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Lemma 10. For n�1, we have

|B (:)
n (gx , x)|�

3:
nx(1&x)+1

:
n

k=1

V x+(1&x)�- k
x&x�- k (gx). (25)

Proof. The proof of this lemma is based on the method of Bojanic and
Vuillemier [1] (see also Cheng [4]). We decompose [0, 1] into three
parts:

I 1*=[0, x&x�- n], I 2*=[x&x�- n, x+(1&x)�- n],

I*3*=[x+(1&x)�- n, 1].

By (21), we have

B (:)
n (gx , x)=|

1

0
gx(t) dtK (1)

n, :(x, t)=21, n( f, x)+22, n( f, x)+23, n( f, x)

where

2j, n( f, x)=|
I*j

gx(t) dt K (1)
n, :(x, t) for j=1, 2, 3.

For t # I*2 , we have | gx(t)|=| gx(t)& gx(x)|�V x+(1&x)�- n
x&x�- n (gx).

So

|22, n( f, x)|�V x+(1&x)�- n
x&x�- n (gx)�

1
n&1

:
n

k=2

V x+(1&x)�- k
x&x�- k (gx). (26)

To estimate 21, n( f, x), let y=x&x�- n. Using partial integration and
Lemma 8, we get

|21, n( f, x)|= } |
y

0
gx(t) dt K (1)

n, :(x, t)}
= } gx( y+) K (1)

n, :(x, y)&|
y

0
K (1)

n, :(x, t) dt gx(t)}
�V x

y+(gx) K (1)
n, :(x, y)+|

y

0
K (1)

n, :(x, t) dt(&Vx
t (gx))

�V x
y+(gx)

:x(1&x)
n(x& y)2+

:x(1&x)
n |

y

0

1
(x&t)2 dt(&V x

t (gx)).
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Since

|
y

0

1
(x&t)2 dt(&V x

t (gx))=&
1

(x&t)2 V x
t (gx)| y+

0 +|
y

0
V x

t (gx)
2

(x&t)3 dt

we have

|21, n( f, x)|�
:x(1&x)

nx2 V x
0(gx)+

:x(1&x)
n |

y

0
V x

t (gx)
2

(x&t)3 dt.

Putting t=x&x�- u for the last integral, we get

|
y

0
V x

t (gx)
2

(x&t)3 dt=
1
x2 |

n

1
V x

x&x�- u (gx) du�
1
x2 :

n

k=1

V x
x&x�- k (gx).

Consequently

|21, n( f, x)|�
:x(1&x)

nx2 V x
0(gx)+

:x(1&x)
nx2 :

n

k=1

V x
x&x�- k (gx). (27)

Using the same method for estimating |23, n( f, x)|, we have

|23, n( f, x)|�
:x(1&x)
n(1&x)2 V 1

x(gx)+
:x(1&x)
n(1&x)2 :

n

k=1

V x+(1&x)�- k
x (gx). (28)

From (25), (27), (28), it follows that

|B (:)
n (gx , x)|�

2:
nx(1&x)

:
n

k=1

V x+(1&x)�- k
x&x�- k (gx).

On the other hand, noticing that |B (:)
n (gx , x)|�V 1

0(gx), we get (25).

In the same manner, we can prove

Lemma 11. For every x # (0, 1), and n>1�3x(1&x), we have

|L (:)
n (gx , x)|�

5:
nx(1&x)+1

:
n

k=1

V x+(1&x)�- k
x&x�- k (gx). (29)

Now we prove Theorems 1 and 2. Note that for all t

f (t)=
1
2: f (x+)+\1&

1
2:+ f (x&)+ gx(t)+

f (x+)& f (x&)
2: sgnt (t&x)

+$x(t) _ f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& , (30)
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and B(:)
n ($x , x)=en(x) Q (:)

nk (x), L (:)
n ($x , x)=0, we get

}B (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1
2:+ f (x&)&}

�|B (:)
n (gx , x)|+ } f (x+)& f (x&)

2: B (:)
n (sgnt (t&x), x)

+_ f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& B (:)

n ($x , x)}, (31)

and

}L (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1
2:+ f (x&)&}

�|L(:)
n (gx , x)|+ } f (x+)& f (x&)

2: L (:)
n (sgnt (t&x), x)}. (32)

By Lemmas 5 and 10, we obtain Theorem 1; and by Lemmas 6 and 11, we
obtain Theorem 2.

To prove Corollary 1, we deduce from Theorem 1 that

lim
n � +�

B (:)
n ((t&x)2, x)=0.

Noticing that gx(t) at point x is continuous, by the well-known Korovkin
Theorem, we have

lim
n � +�

B (:)
n (gx , x)=0

and by Lemma 5, the right member of (31) tends to 0(n � +�), and (9)
is proved.

The proof of (10) is analogous.
We have proved Theorems 1 and 2 and Corollary 1. We conclude this

section by giving an immediate consequence of (30), (19), and (25):

Proposition 1. Let f be of bounded variation on [0, 1]. Then for every
x # [0, 1] such that f (x)=( f (x+)+ f (x&))�2 and every n�1, we have
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}B (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1
2:+ f (x&)&}

�
3:

nx(1&x)+1
:
n

k=1

V x+(1&x)�- k
x&x�- k (gx)

+_0.8(2x2&2x+1)+1�6+
5
12

en(x)&
_

:

- nx(1&x)+1�3
| f (x+)& f (x&)|

(when x=0, (resp.: x=1), we set (1�2:) f (x+)+(1&(1�2:)) f (x&)=
f (0), (resp.: f (1)).

In the particular case :=1, our Proposition 1 improves a result of Guo
and Khan [6, (3.2)].

3. OUR ESTIMATES ARE SHARP

We shall show that our estimates are asymptotically optimal when
n � +�. First we need the following lemmas:

Lemma 12. For x # (0, 1), f (t) : |t&x|; then for n>256�x(1&x), we
have

L (1)
n ( |(t&x)|, x)�

1
32 \

x(1&x)
n +

1�2

. (33)

Proof. Let Bn( f, x)=�n
k=0 f (k�n) Pnk(x) be the Bernstein operator;

then

Bn( |t&x| , x)&L (1)
n ( |t&x| , x)

�(n+1) :
n

k=0

Pnk(x) |
Ik

| |t&x|& |k�n&x| | dt

�(n+1) :
n

k=0

Pnk(x) |
Ik

|t&k�n| dt

�
1

2n+2
:
n

k=0

Pnk(x)<
1
2n

.
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By [4, (2.6)], as n>256�x(1&x), there holds

L (1)
n ( |t&x|, x)�Bn( |t&x|, x)&

1
2n

�
1

16 \
x(1&x)

n +
1�2

&
1

2n

�
1

32 \
x(1&x)

n +
1�2

.

Lemma 13. For n a positive even number n=2m (m=1, 2, 3, ...), we have

1

2:
&J :

2m, m+1 \1

2+>\1

4+
: 1

- n
. (34)

Proof. Obviously,

:
2m

k=0

P2m, k( 1
2)=1, and :

m&1

k=0

P2m, k( 1
2)= :

2m

k=m+1

P2m, k( 1
2).

So

J2m, m+1 ( 1
2)= 1

2& 1
2P2m, m( 1

2)� 1
4 .

Using Stirling's formula n !=(2?n)1�2 nne&ne%n�12n, where 0<%n<1, we
obtain

P2m, m \1

2+=
(2m)!

(m !)2 \1

2+
2m

=
e%2m�24m

- ?m e%m�6m
.

So we have

1
2

1

- n
<- 2�? e&1�6 1

- n
<P2m, n \1

2+<- 2�? e1�24 1

- n
. (35)

By the mean-value theorem and the above inequality for J2m, m+1( 1
2), it

follows that

} 1
2:&J :

2m, m+1 \1
2+}=

1
2:&J :

2m, m+1 \1
2+=:#:&1

m

1
2

P2m, m \1
2+

where 1�4�J2m, m+1( 1
2)<#m< 1

2 .
From (35), we have

:#:&1
m

1

2
P2m, m \1

2+>: \1

4+
:&1 1

2
}
1

2

1

- n
>\1

4+
: 1

- n
.
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Now we prove that our estimates (7) and (8) are asymptotically optimal
for continuity points and discontinuity points of bounded variation
function f (t). If x is the continuity point of f, (7) and (8) become

|B(:)
n ( f, x)& f (x)|�

3:
nx(1&x)+1

:
n

k=1

V x+(1&x)�- k
x&x�- k ( f ) (36)

and

|L(:)
n ( f, x)& f (x)|�

5:
nx(1&x)+1

:
n

k=1

V x+(1&x)�- k
x&x�- k ( f ). (37)

For :{1, consider f (t)=t; from (36) and [11, Lemma 4], when n is
sufficiently large, we have

C1

- x(1&x)

- n
�|B (:)

n (t, x)&x|�
6:

- n x(1&x)+1�- n
(38)

where C1 is a positive constant and

L (:)
n (t, x)&x=\ :

n

k=0

(k�n) Q (:)
nk (x)&x++

1
n+1 \

1
2

& :
n

k=0

(k�n) Q (:)
nk (x)+ .

(39)

Hence from (37) and a simple comparison between L(:)
n (t, x) and B (:)

n (t, x),
when n is sufficiently large, we have

C2

- x(1&x)

- n
�|L (:)

n (t, x)&x|�
10:

- n x(1&x)+1�- n
(40)

where C2 is a positive constant.
When :=1, for B (1)

n the conclusion is known (see [4]). For L (1)
n , we

take f (t)=|t&x| (0<x<1), by (33) and (37), if n>256�x(1&x), we have

1

32 \
x(1&x)

n +
1�2

�|L (1)
n ( |t&x|, x)|�

10

- n x(1&x)+1�- n
. (41)

From (38), (40, (41), we deduce that (36) and (37) cannot be asymp-
totically improved when n � +�.
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For the discontinuity point of f, when gx #0, (7) and (8) become

}B (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1
2:+ f (x&)&}

�
2:

- nx(1&x)+1
(| f (x+)& f (x&)|+en(x) | f (x)& f (x&)|) (42)

and

}L (:)
n ( f, x)&_ 1

2: f (x+)+\1&
1

2:+ f (x&)&}
�

4:

- nx(1&x)+1
| f (x+)& f (x&)|. (43)

We take

f (t)={1, 0�t� 1
2

0, 1
2<t�1

and x= 1
2 , n=2m. Now gx(t)#0.

By Lemma 13 and (42), we get

\1

4+
: 1

- n
� }B (:)

n ( f, x)&_ 1

2:
f (x+)+\1&

1

2:+ f (x&)&}� 4:

- n
. (44)

Therefore, (42) cannot be asymptotically improved when n � +�, and the
proof of the same property for (43) is similar.

Remark 2. Some other classical operators, such as those of Sza� sz,
Baskakov, and Meyerko� nig and Zeller, can be modified in a way similar to
that for the Bernstein operator. The methods for approximation of these
modified operators are different. We shall discuss them elsewhere.
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